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The low-Reynolds-number stability of a region of buoyant fluid surrounded by 
denser fluid is analysed in two situations. In the first study, the buoyant fluid lies in 
a thin layer sandwiched between two denser and much deeper layers. The growth 
rate and wavelength of the most unstable sinusoidal perturbation are calculated and 
the effects of the viscosity ratios and density differences between the fluids are 
investigated. It is found that if the buoyant fluid is much less viscous than the 
overlying fluid then, in quite general circumstances, both the most unstable 
wavelength and the corresponding growth rate are inversely proportional to the cube 
root of the viscosity of the buoyant fluid. A physical explanation of this result is 
given by scaling analysis of the total dissipation. In the second study, the buoyant 
fluid takes the form of a cylinder rising through a uniform environment. The 
eigenmodes of small perturbation about this state of motion are found for each axial 
wavenumber in terms of Fourier series of separable solutions to the Stokes equations. 
In  contrast to the first study, i t  is found that the most unstable wavelength and 
growth rate are asymptotically independent of the viscosity of the buoyant fluid 
when this viscosity is small. 

The difference between the results of the two studies is of importance, particularly 
for geophysical applications in which viscosity ratios are very large. Previous models 
of linear regions of volcanism a t  mid-ocean ridges and a t  island arcs have assumed 
that results obtained in simple two-layered systems can be generalized to other 
geometries. The conclusions of these models are discussed in the light of the stability 
results for a cylindrical (and hence linear) buoyant region. 

1. Introduction 
When one or more layers of buoyant fluid underlie a layer of relatively dense fluid 

the system is unstable : any small disturbance to the interface between the layers will 
grow until the fluid layers have overturned, possibly with some mixing, and light 
fluid overlies dense fluid. The nature of the overturning depends on the size and 
geometry of any boundaries, the viscosities and densities of the fluids and the layer 
depths, The initial vertical motion is dominated by the wavelength of the most 
unstable perturbation. If the fluids have large viscosities and their horizontal extent 
is much greater than the vertical structure of the layering, then subsequent evolution 
of the motion produces an array of rising blobs of buoyant fluid at a spacing 
determined by this wavelength (Whitehead & Luther 1975). In the geophysical 
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literature these buoyant blobs are usually referred to as diapirs and their formation 
as diapirism (Braunstein & O’Brien 1968) and we shall adopt this convention here. 

The regular spacing of diapirs formed by such buoyant instabilities plays an 
important role in determining the spatial periodicity of several geological features. 
Salt-dome formations result when a layered salt deposit underlies a sedimentary 
overburden of greater density (Nettleton 1934) ; the planform, spacing and timescale 
of the subsequent diapirism of salt through sediment was predicted by calculations 
in a simple layered geometry (Selig 1965 ; Woidt 1978). More recently, buoyant 
instabilities have been invoked as an explanation of regularly spaced volcanism 
observed in continental rifting (Mohr & Wood 1976; Bonatti 1985), in Iceland 
(Sigurdsson & Sparks 1978), in island arcs (Marsh & Carmichael 1974; Marsh 1979) 
and along mid-ocean ridges (Whitehead, Dick & Schouten 1984 ; Schouten, Klitgord 
& Whitehead 1985; Crane 1985). In  these cases, it is suggested that a region of 
buoyant, partially molten material accumulates a t  depth, that  when sufficient 
material has accumulated a gravitational instability develops, and that the resultant 
diapirs rapidly carry the buoyant material to  the surface. The source regions are left 
depleted of melt and the cycle then repeats. Measurements of the wavelength and 
estimates of the timescale of formation of these features have been used to  infer 
values for the properties and dimensions of the relevant regions of mantle. It is 
essential, therefore, to have an appropriate model for these instabilities. 

The early geophysical applications prompted analyses of the linear stability of 
some specific layered systems (Biot & Odd 1965; Selig 1965; Whitehead & Luther 
1975) and numerical simulation of general layered systems (Ramberg 1968a, b) .  
However, in applications of gravitational-instability models to volcanism at  
mid-ocean ridges and a t  island arcs, the linear arrangement of the volcanoes is not 
consistent with the use of planar geometry ; instead it suggests that they arise from 
underlying magmatic sources that are narrow and linear. Recent experimental work 
has investigated diapir formation and spacing on a rising cylinder of buoyant fluid 
and at the leading edge of a rising buoyant sheet (Whitehead et al. 1984; Kerr & 
Lister 1988). 

Nevertheless, the lack of a theoretical analysis of instabilities to linear fluid bodies 
such as a cylinder or sheet has led previous workers to ignore differences in geometry 
and assume that results from layered systems may be applied to other configurations. 
The results to be presented show that this assumption is fundamentally incorrect. 
We describe the theoretical solution of two model problems which highlight the 
dependence of the spacing and growth rate of diapirs upon the geometry of the 
buoyant structure giving rise to the instability. In $2 we present a linear stability 
analysis of a thin buoyant layer of fluid sandwiched between two denser and much 
deeper layers. Significant differences in behaviour are found between this model and 
earlier two-layer models. In particular, if the densities of the upper and lower layers 
of our model are similar then the most unstable wavelength may be very large or 
even infinite. In  $3  we present a stability analysis of a horizontal cylinder of buoyant 
fluid rising through a uniform environment. The eigenmodes of perturbation are 
found for each axial wavenumber as Fourier series in the azimuthal dependence of 
separable solutions to the Stokes equations. The wavelength and growth rate of the 
most unstable perturbation are then determined numerically. The analytical results 
are discussed in $ 4  and are found to be in reasonable agreement with experimental 
observations. The results from the cylindrical geometry differ greatly, however, from 
the stability results for a layer when the viscosity of the buoyant Auid is much less 
than its environment. The geophysical implications are discussed in $ 5 .  
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FIGURE 1. Definition sketch. A layer of buoyant fluid is sandwiched between two semi-infinite 
layers of denser fluids. The interfaces between the layers are given small sinusoidal perturbations 
from their initial positions at z = & h. 

2. Gravitational instability of a buoyant layer 
Consider a layer of buoyant fluid lying in - h < z < h, sandwiched between two 

semi-infinite layers of fluid in hg z < 00 and - co < z < -h. Let the viscosities ,u 
and densities p of the fluids be as shown in figure 1. Motivated by the extremely large 
viscosities of geological fluids, we assume that inertial effects are negligible and that 
the fluid motion is thus governed by the Stokes equations. We also assume that 
diffusion may be ignored on the timescale of the instability and that surface tension 
is negligible. 

It is convenient to  non-dimensionalize lengths with respect to  h, times with respect 
to ,uo/((p+-po) gh), and fluid properties with respect to those of the sandwiched layer, 
po and ,uo. This gives rise to the dimensionless parameters V = ,u+/,uo, W = ,u-/,u0 
and P = (p--po)/(p+-po) (assumed positive). From now on all variables will be 
dimensionless unless explicitly stated otherwise. 

We look for eigenmodes of the linearized equations of motion corresponding to 
two-dimensional sinusoidal perturbations of the interface. All quantities may thus be 
written as f(z)eikXfnt, where k is the wavenumber and u the growth rate of the 
disturbance. The Stokes equations require the stream function $ to satisfy V4$ = 0. 
The boundary conditions of no flow as z --f & 00 further reduce $ to the form 

$+ = (A + Bz) ePzk eikzfnt 

+- = (G + H z )  ezr eikz+ut 

(2  2 I ) ,  (2.1 a )  

(2 < - 1). (2 . lc)  

= ((C +Dz) ePzk + ( E  +Fz)  eZ”) eikx+nt (14 < ( 2 . l b )  

The eight unknown constants, A to H ,  are determined by the eight linearized 
boundary conditions arising from continuity of the vertical and horizontal 
components of velocity and stress a t  the two interfaces. These boundary conditions 

(2.2a) 

(2 .2b)  I (2 .2d )  

take the form 

(2 = I ) ,  (2 .2c)  

$+ = $0 

D$+ = D$o 

V(D2 + k2) $+ = (D2 + k2) $o 

$ k2 V(  D2 - 3k2) D$+ = (D2 - 3k2) D$o + 0 
U 



580 J .  R.  Lister and R .  C. Kerr 

(2 .2e)  

(2 .2 . f )  

(2Q) 
( 2  = - l) ,  I 4- = 40 

D@- = D$o 

W(D2 + k’) 4- = (D2 + k2)  $,, 

w0 k2 J W(D2 - 3k2) D@- = (D2 - 3k2)  Dt,hO + - 
u 

(2 .2h)  

where D denotes a/&. Substitution from (2.1) into (2 .2) ,  followed by elimination of 
A ,  B, G and H ,  yields a linear homogeneous set of four equations for C, D, E and F .  
After some manipulation, we deduce that a solution is possible provided that 

1 
V - l - -  

2ku 

(1 - V) (2k-  1 

0 

- ( W + l ) e 2 ”  

V+1--  eZIC 0 ( 2 L )  
0 

(1  + V ) ( 2 k +  1 )  - (V+ 1)e2lC 1 - V  

0 

l -w ( 1 - W )  (2k - 1) ( 1 + W) (2k + 1 ) e2’ 

= 0. (2 .3)  

Equation (2 .3)  is a quadratic for the growth rate a ( k ; P ,  V ,  W); the two roots are 
both real and correspond to the pair of eigenmodes of perturbation for a system with 
two interfaces. We shall consider throughout the most positive root for (T, that is the 
least stable root, and will concentrate on three issues: (i) when is there a maximum 
growth rate v* a t  a finite wavelength 2n/k* ; (ii) if k* and v* exist, then how do they 
depend on P ,  V and W ;  and (iii) what happens as V ,  W +  00 1 

We note that in any real situation k* = 0 will not be achieved, owing either to 
violation of the assumption of semi-infinite layers, or to the appearance of inertial 
effects at sufficiently large wavelengths. I n  such a case, the spacing of the diapirs 
would be determined by the horizontal extent of the layers, by the finite depths of 
the upper and lower layers, or by an  inertial lengthscale, and would not scale with 
the depth of the buoyant layer. 

2.1. The existence of a Jinite optimum wavelength 

It is found that, for given values o fP ,  V and W, a is either a monotonically decreasing 
function of k and thus k* = 0;  or it has a single maximum a t  k* > 0. The local 
behaviour of u around k = 0 can be found by Taylor expansion of the quadratic (2 .3) .  

We see that, as expected, when the lower half-space is less dense than tho upper the 
system is very unstable - a balance between buoyancy forces ( K k-3) and viscous 
drag ( K uk-2)  results in a growth rate proportional to k-l as k + 0, in which the thin 
intermediate layer plays no role. 

( b )  Conversely, when P > 1 the lower half-space is more dense than the upper and 

k* > 0 (V+ W =k 0). 
2kF 

U -  
(V+ W )  (P- 1 ) ’  

(The root given by (2 .4)  is now the most stable root and of no interest.) As an 
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FIGURE 2. Contours of the wavenumber, k*(P, V ,  W), of the most unstable disturbance to a buoyant 
layer, drawn in four cross-sections of (P, V ,  W)-space: (a) V =  1 ;  (b)  W =  1; ( c )  V = W ;  and 
(d )  P = 1 (ellipse (2.6) dashed). 

P V 

exceptional case of (2.5), we note that if V = W = 0 then u - P(1 -%k4)/(2(P- 1)) 
and hence k* = 0. This exception corresponds to comparatively inviscid upper and 
lower layers, with instability occurring a t  the wavelength that minimizes 
deformation of the viscous intermediate layer. 

( c )  Finally, if the upper and lower layers have equal densities (P = 1)  then it may 
be shown that u N (l+O(k))/(Ti+W). Inspection of the O(k)-term reveals that 
k* = 0 if 

and k* > 0 otherwise. For the subcase V = W ,  this result shows that the numerical 
results of Ramberg (1972, table I )  are incorrect for Ti < 4 3  since the possibility that 
k* = 0 was ignored. 

12 2 (V+W)2+3(Ti-W)2 (2.6) 

I n  summary, k* = 0 if either P < 1 or both P = 1 and (2.6) hold. 

2.2. The dependence of k* and u* on P ,  V and W 
For situations in which k* > 0, the dependence of k* and u* upon P, V and W is best 
displayed by contour maps of k* and u* on plane cross-sections of (P ,  V ,  W)-space. In  
figures 2 and 3 we show four such contour maps, the cross-sections chosen being : (a )  
equal upper- and intermediate-layer viscosities V = 1 ; ( b )  equal lower- and 
intermediate-layer viscosities W = 1 ; ( c )  equal upper- and lower-layer viscosities 
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FIGURE 3. Contours of the growth rate, u*(k*;P, V ,  W ) ,  of the most unstable disturbance to a 
buoyant layer, drawn in four cross-sections of (P ,  V ,  W)-space: (a) V = 1 ; ( b )  W = 1 ; (c) V = W; 
and ( d )  P = 1 (ellipse (2.6) dashed). 

V = W ;  and ( d )  equal upper- and lower-layer densities P = 1. I n  case (d )  the ellipse 
defined by (2.6) is shown explicitly; within the ellipse k* = 0 and v* = l / ( V +  W ) .  

As expected, CT* is seen to be a decreasing function of P, V and W since an increase 
in the density of the lower layer, or in the viscosities, inhibits motion and retards 
growth of the instability. The optimal wavenumber k* is determined by a balance 
between two conflicting requirements : the ratio of buoyancy to viscous forces is 
greater the larger the lengthscale of the flow, whereas the ease of moving fluid by half 
a wavelength from a thinning region in the intermediate layer to a thickening region 
is greater the smaller the lengthscale of the flow. Increases in either P or in W reflect 
an increasing difficulty in moving the lower layer and increases the importance of the 
latter requirement. An increase in V reflects an increase in the viscous forces in the 
upper layer and in the importance of the former requirement. We would therefore 
expect k* to  be an increasing function of P and Wand a decreasing function of V .  This 
is seen to be the case. 

2.3. The limit of large viscosity ratios 
The three-layer model we have chosen encompasses some previously studied two- 
layer models as degenerate subcases. Selig (1965) considered a layer of buoyant fluid 
underlying denser fluid and supported either by a rigid lower boundary or by a free- 
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slip though non-deformable lower boundary. The analyses are recovered in the limits 
of W - t  00 and of P+ 03, W+ 0.  In  the further limit V % 1 the results are 

k* w ($7, a* - (&y (rigid), 

k* - (&?, a* N (&) (free-slip). 

( 2 . 7 a )  

(2.7 b )  

(The first of these expressions is a correction to the often-cited? numerical result from 
Selig 1965 that 2k* - 2.15V-i.) 

We find, however, that the asymptotic dependence of k* and a* on V as V +  00 is 
much more general than the previous studies would indicate. Detailed analysis of 
(2 .3 )  reveals that in the limit V+ co this equation reduces to a few simple forms. 

(a)  When W = CV, V- t  03, and C is fixed, the leading-order terms satisfy 

(4Ck3V+C+ 1)(2kaV)'+ ($(P-C) k 3 V + P -  1 )  (2kaV)-53k3V = 0 .  (2.80,) 

(6) If W = CV:, V+ co, and C is fixed, then 

(C(k3V)i+f) (2kav)32+ (#Pk3V(C(k3V)f+ 1) + (P- 1) (C(k3V)$+t))  (2kaV)  

-!Pk3V(C(k3V)i+ 1) = 0 .  (2 .86 )  

( c )  The limit W % V 9 1 may be evaluated directly or recovered from ( 2 . 8 ~ )  by 

(2k3V+ 1)  2kgV-$k3V = 0 (W + V ) .  ( 2 . 9 ~ )  

(d )  The limit Vi 4 W 4 V is obtained by putting C = 0 in ( 2 . 8 ~ )  or by letting 

( 2 k ~ V ) ' + ( $ f ' k 3 V + P - 1 ) ( 2 k a V ) - ~ P k 3 V =  0 (Vi 6 W $  V) .  (2 .96 )  

allowing C -+ co . We obtain 

C+oo in ( 2 . 8 b ) :  

( e )  By putting C = 0 in (2 .8b )  we find that when W 4 fi 

( 2 ~ a ~ ) ~ + ( ~ ~ l e ~ ~ + ~ - 1 ) ( 2 k a ~ ) - - ~ k ~ ~ =  o ( ~ 4  ~ $ 1 .  ( 2 . 9 ~ )  

In each of these limits, the natural groupings show that 

k* w cl(P, W )  V-6, a* - c#', W )  V-g, (2 .10)  

where the coefficients c1 and c2 are functions of P and W ,  which only depend on W if 
either W = O(@) or W = O(V). Thus, if W 4 Vi or Vi 4 W 4 V or V 4 W then k*Vi 
and a*@ are functions only of P .  The functions appropriate to  the three regimes are 
shown in figures 4 and 5 .  

The above results may be interpreted, and their generality of application may be 
explained, in terms of the following physical arguments (taken in dimensionless 
form). The vertical velocities at the peaks and troughs of the disturbance are O(a). 
In the upper fluid, shear of O ( a k )  due to variations in vertical velocity causes viscous 
dissipation of O( Va2)  per wavelength. By continuity, the horizontal velocity, u, in the 
buoyant layer is O(ak- l ) .  The dissipation in this layer is thus O ( V ~ ~ - ~ )  per 
wavelength. The dissipation in the lower fluid may be shown not to exceed the 
dissipation in the other two layers. The dissipation is balanced by release of buoyant 

t Whitehead & Luther 1975, Marsh & Carmichael 1974, Marsh 1979, Whitehead et ul. 1984, 
Boiiatti 1985, Crane 1985, Schouten et aE. 1985. 
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FIGURE 5. The growth rate of the most unstable disturbance to a buoyant layer in the limit 
V+ co: (i) W 6 Vi; (ii) Vi + W 6 V ;  and (iii) V < W. 



Gravitational instability of a buoyant region of Jluid 585 

energy of O(ak- l )  per wavelength. By seeking the maximum value cr which satisfies 

vat + cr2k-3 - ak-1 (2.11) the energy balance 

we deduce that a* - V-g and k* - V-i, in agreement with our analysis. (Similar 
energy-balance arguments should prove useful in understanding related problems 
such as the instability of layers of ferro-fluids under an applied magnetic field (J. E. 
Wesfreid, personal communication).) 

We now consider the effect of the lower layer on disturbances with k = O(V-i). 
Suppose that the values at the lower interface of the horizontal velocity and stress 
in the buoyant layer are of the same order of magnitude as the values averaged 
over the entire buoyant layer. Then continuity of velocity a t  the lower interface 
would suggest that the horizontal velocity in the lower layer is O(u), whereas con- 
tinuity of stress would suggest that the velocity is O(uk-lW-l). We conclude that if 
W + k-' = O(Vi) then the horizontal velocity a t  the lower interface is much less 
than the mean velocity in the middle layer and the lower interface appears rigid. 
Conversely, if W 4 k-l  = O(f l ) ,  the horizontal flow has a maximum near the lower 
interface, the stress there is much less than in the interior of the middle layer, and 
the lower interface appears free-slip. 

The horizontal motion in the intermediate layer causes an accumulation of 
buoyant fluid a t  the peaks of the disturbance. The resultant vertical forces cause 
motion in the upper layer. If W 4 V the buoyancy force must be balanced by the 
viscous resistance of the upper layer and the lower interface appears perfectly 
flexible. If W $  V (or if P $ 1 )  then the lower interface is effectively non- 
deformable. 

These observations effectively explain the various limits in (2.8) and (2.9). The 
transition from ( 2 . 9 ~ )  through (2.8b) to (2.9b) a t  W = O(Vi) is due to the change from 
a free-slip lower interface when W 4 fl to a no-slip interface when W $ Vi. The 
transition from (2 .9b)  through ( 2 . 8 ~ )  to ( 2 . 9 ~ )  at W = O(V) is due to the change from 
a flexible lower interface when W 4 V to a non-deformable interface when W 9 V.  If 
the lower interface is non-deformable then the density of the lower layer is irrelevant 
and hence ( 2 . 9 ~ )  does not depend on P. 

3. Gravitational instability of a buoyant cylinder 
Consider a cylinder of buoyant fluid, radius a, initially horizontal and rising with 

vertical velocity U (to be determined) through an unbounded volume of relatively 
dense fluid. Let the viscosities and densities of the fluid be as shown in figure 6. We 
use cylindrical coordinates in the frame in which the cylinder is a t  rest with the 
undisturbed interface a t  r = a. As in $2, we describe a linear stability analysis of the 
basic state, neglecting inertial effects, diffusion and surface tension. 

At the outset we non-dimensionalize lengths with respect to the radius a, velocities 
with respect to g(p+-po)a2/,u+ and fluid properties with respect to those of the 
external fluid, p+ and p+. The resultant dimensionless parameters are the viscosity 
ratio V = ,u+/,uo, the Reynolds number R = p+ Ual,u+, and the dimensionless rise 
velocity 

(3.1) UP+ 
g(P+-Po)a2'  

U =  

The derivation of the basic flow will be sketched only briefly. We assume that 
R < 1. The flow around the cylinder is described by Stokes equations for r 4 R-I, 
but it is necessary to add on the Oseen correction for r = O(R-'). Solution of 
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P+ Pi 

FIGURE 6. Definition sketch. A horizontal cylinder of buoyant fluid, radius a,  rises with velocity 
U through an unbounded viscous fluid. 

the equations of motion subject to continuity of velocity and of tangential stress at 
r = 1 yields the following equations for the basic flow field uo:  

(1 - r 2 )  cos 0 
V 

8( 1 + V )  
u; = - ( r  < 1);  (3.2a) 

uf = &(~( l - ; l i )_ , ( l+~) lnr )cosB (1 < r el?-'); (3.2b) 

(3r2-l)sinB 
V 

8(  1 + V )  
u; = ___ ( r  < 1 ) ;  ( 3 . 2 ~ )  

By matching to the outer Oseen-flow expansion, we find that U is given implicitly by 

8 = 4(V+ 1) (( V +  1) (In - y ) + V+ i) (1 + O(ln R)-2 ) ,  (3.3) 

where y denotes Euler's constant, 0.5772.. . . A description of the matching technique 
for the case V = 0 may be found in Van Dyke (1964). 

We now allow a small perturbation to the interface of the form 

r = 1 + e f (8)  cos kz ert. 

This induces a perturbation velocity field 

u1 = E(U; (T ,  0) cos kz ,  ui(r, 0) cos kz ,  ut(r, 0) sin kz )  ert. (3.4) 
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The linearized boundary conditions for continuity of the three components of 
velocity and stress may be written in the form 

[u;]' = 0 ,  u;+ f - = 0, [u;]: = 0, [ auT (3.5a-c) 

(3 .5d)  

(3 .5e)  

[(T:, - kfg&]+ = 0 ,  (3 .5f  1 
where [ 1" denotes the difference in values between r = 1, and r = 1-. The kinematic 
boundary condition for the motion of the interface is given by 

I fR  4 k then the perturbation velocity field u1 is given by solving Stokes equations 
subject to u1 --f 0 as r + co and the boundary conditions (3 .5) .  This serves to establish 
a linear relation between u1 and f. If we define a linear operator L such that 

Lf = ui+f - -f'U; (2.) 
then substitution into (3 .6)  shows that u is an eigenvalue and f the corresponding 
eigenfunction of the operator L. We find a representation of L by looking for a 
Fourier series solution to (3 .5)  and (3 .6) .  

First, consider the problem 

bim) cos me 

b!jm) sin m0 

him) cos mB 

him) cos me 

him) sin me 

bkm) cos m8 

(3 .7a)  

pvw = vp1, w * u1 = 0. (3.7 b, c )  

We note that if @, )Ir and A are harmonic functions then 

u1 = V@+X A V@+V(X * A ) - 2 A ,  p' = 2pV * A (3.8a,  b )  

satisfy (3.7 b ,  c ) .  Solutions with the appropriate &dependence and behaviour a t  the 
origin and infinity may be found by taking 

$ = 0,  

@ = a~m)Im(kr)cosIczcosm~ 

@ = aim)Km(kr) cos kz cos m0 

(T < I ) ,  

( r  2 l ) ,  

( 3 . 9 ~ )  

(3.9b) 

(3.9c) 
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FIGURE 7. The growth rate of disturbances to a buoyant cylinder of fluid as a function of the 
axial wavenumber, k :  (a )  V = 1 and ( b )  V = 5. 

k 

A = ([aim)Im+l(kr) +aim)I,-l(kr)]  cosmB, 

l a ~ , ) ~ , + l ( k r ) - a ~ ~ ) I , - l ( k ~ ) ]  sinme, 0) cos kz ( r  < I), (3 .94  

A = ([a:m)K,+l(kr) +a$m)K,-l(kr)] cosmB, 

[a$m)K,+l(kr) -a$m)K,-l(kr)] sin me, 0) cos kz ( r  3 l) ,  (3.9e) 

where I, and K, are modified Bessel functions of order m. Substitution of (3.9) into 
(3.8) and (3.7) yields six linear equations for the coefficients alm), i  = 1 .  . . 6 .  By 
inverting these equations, we obtain an expression for uF( 1) as a linear combination 
of bjm),i  = 1 ... 6. 

Next, we expand f in a Fourier cosine series with coefficients f (,) and substitute 
into (3.5). Each Fourier component gives rise to a problem of the form (3.7),  in which 
each bjm) is a linear combination of f(,-l) and f (m+l ) .  Solution for u;(l) and 
substitution into (3.6) yields the eigenvalue equation 

a: 

~ f =  c C A,,(k; V ) f ( * )  cosm8 = c C f (m)cosmB.  (3.10) 

The matrix A,, is bidiagonal and satisfies A,, = 0 if Im--n) =!= 1. Despite the 
banded nature of A,  it is not possible to  determine the eigenvalues (r analytically 

m=O ( m  n=O ) m-0 
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FIGURE 8. The wavelength of the most unstable perturbation to several buoyant structures as a 
function of the viscosity ratio: (i) two-layer, rigid boundary; (ii) two-layer. free-slip boundary; (iii) 
three-layer, equal upper and lower properties; (iv) theoretical predictions for a cylinder; and 
symbols show experimental observations of a cylinder with approximate error bars. (Based on Kerr 
& Lister 1988, figure 5 . )  

owing to the complexity of the non-zero elements. Progress can be made by 
truncation of the Fourier expansion after M terms. The M eigenvalues, @), i = 1, 
2 , .  . . ,M of the upper left M x M  corner of A are then determined numerically. If the 
eigenvectors of A are dominated by low-order Fourier components then we would 
expect {rjM)> to  tend to the eigenvalues of A as M +  00. This is found to be the case. 
The eigenvalues of each truncation are either real or pure imaginary. If the 
eigenvalues of each truncated matrix are ordered by decreasing real part, and then 
by increasing imaginary part, then each sequence {ur), uFz)  . . .} converges to 
a limit a,; the corresponding sequence of eigenvectors is also convergent with the 
proportion of higher-frequency Fourier components increasing with i. The eigen- 
values corresponding to large values of i have large imaginary parts and represent 
the advection of ripples in the interface by the basic flow. The stability of the basic 
flow is determined by whether g1 is real and positive or imaginary. 

Numerical results show that for each V ,  Re(a l )  possesses a single (positive) 
maximum (r*( V )  a t  a wavenumber k = k*( V ) .  The basic flow is thus always unstable. 
The range of wavenumbers around k*, for which Re (a1) > 0, may be finite or 
unbounded, depending on the value of V .  Typical results are shown in figure 7 .  The 
dependence of cr* and k* on V will be discussed in the next section. 

4. Comparison of results 
The models described in @2 and 3 provide good test cases for questioning some 

assumptions made in previous models of buoyant instabilities in geophysics. In  order 
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FIGURE 9. The timescale of the maximum growth rate of instabilities of the buoyant structures 
described in figure 8 as a function of the viscosity ratio. 

to compare the results of $2 with those of $ 3 and of previous workers, we rescale the 
results of that section by choosing a timescale p+/( (p+ -p - )  gh) based on the viscosity 
of the upper layer, rather than on the viscosity of the intermediate layer. In figures 
8 and 9 (reproduced from Kerr & Lister 1988) we show the dimensionless wavelength, 
A = 27c/k*, and timescale, r = l/r*, of the most unstable perturbation in three 
examples drawn from $2 : (i) a two-layer model with rigid lower boundary ( W = 00)  ; 
(ii) a two-layer model with free-slip, non-deformable lower boundary (1' = co, 
W = 0) ; and (iii) the case of equal upper- and lower-layer properties ( P  = 1 ,  W = V ) .  
In the same diagrams we show the results derived from the theoretical investiga- 
tion of instabilities to a buoyant cylinder as set out in $3.  

Also shown in these figures are measurements of diapir spacing and growth rate for 
an unstable buoyant cylinder from experiments reported in detail by Kerr & Lister 
(1988). In these experiments a steady source of relatively buoyant fluid was towed 
across the interior of a large tank filled with another viscous fluid to produce a 
trailing cylinder of buoyant fluid which was horizontal and nearly uniform in 
diameter. This cylinder subsequently rose through the tank and became unstable to 
asymmetric disturbances ; the disturbances rapidly became much larger than the 
diameter of the cylinder and focused the buoyant fluid into regularly spaced creeping 
plumes (figure 10). As discussed in Kerr & Lister (1988), the experimental 
measurements are in reasonable agreement with the theoretical calculations for a 
cylinder and are clearly incompatible with the predictions from the three layered 
geometries. We also note here that the cylinder was observed to rise through many 
times its own diameter before showing signs of instability. This phenomenon may be 
explained from (3.3) which shows that the dimensionless rise velocity i? is much 
larger than u when R 6 1. 
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FIGURE 10. Regularly spaced creeping plumes formed by the gravitational instability of a buoyant 
cylinder (V = 11, a = 0.056 cm, p+ = 12.1 g cm-ls-', p+-po = 0.0337 g ~ r n - ~ ) .  The graph paper 
background has a 1 mm grid. (Reproduced from Kerr & Lister 1988, figure 1.)  

The two-layer models, originally described by Selig (1965), give very similar results 
to each other. The asymptotic dependence of A and 7 on V = p+/po as V +  00,  namely 

hoc @, roc v-i, (4.1 a ,  b)  

provides a good approximation even when V is not large ; the change from a free-slip 
to a rigid lower boundary gives rise to only a small change in the multiplicative 
constant. The similarity of the results has led authors writing subsequently to the 
original studies to suppose that other buoyant instabilities will have a similar 
dependence on V ,  with only a slight change in the multiplicative constant (Marsh & 
Carmichael 1974; Marsh 1979; Whitehead et al. 1984; Schouten et al. 1985; Crane 
1985). Our results show that there is little truth in this assumption and that the 
geometry of the buoyant region is far more important than had previously been 
realized. 

The results of $2 and the physical arguments given a t  the end of that section 
indicate that for a layered geometry, the asymptotic dependence of h and r on V is 
indeed given by a @-relationship. The behaviour at small viscosity ratios, however, 
may be very different. For example, if the upper and lower layers of a three-layered 
system have equal densities and the viscosity ratios, V and W ,  lie within the ellipse 
defined by (2.6) then h = 00. In  this case, as discussed in $2, the spacing of the diapirs 
would not, in reality, scale with the depth of the buoyant layer. 

The contrast between the two-layer results and the cylindrical results is still more 
striking. Our theoretical analysis of the instability of a cylinder predicts that both h 
and 7 are asymptotically independent of V as V-t  00 : 

h - 8.09 ..., r - 2.92 .... (4.2a, b )  

These results are related to the fact that, unlike in the layered geometry, the buoyant 
region can deform without transport along the axis of the cylinder. The dissipation 
is thus dominated by the external flow around the cylinder. 

To sum up, we have shown that the introduction of a deformable lower layer can 
have a dramatic effect on the predictions of layered models a t  low viscosity ratios. 
Further, wavelengths and growth rates of instabilities in layered and cylindrical 
buoyant structures are seen to be very different a t  large viscosity ratios. These 
distinctions have important geophysical implications which will be discussed in the 
next section. 
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5. Discussion 
In  this section we discuss the implications of our results for geophysical modelling. 

A gcneral point to note is that the stability analyses described in 992 and 3 are for 
fixed geometries and are not strictly applicable to geophysical problems in which the 
geometry evolves with time. An adaptation of the 'frozen-time' treatment of a 
growing thermal boundary layer (Lick 1965; Howard 1966) allows a connection to be 
made between and the rate at which the geometry is evolving. In  the original 
problem this treatment considers the stability of an instantaneous temperature 
profile rather than that of the real temperature profile which evolves with time. The 
method has been found to give good results in Rayleigh-Bdnard and Marangoni 
convection problems (Currie 1967; Vidal & Acrivos 1968). Here we might wish to 
consider either a buoyant layer underlying a dense layer whose thickness H increases 
with time (salt-dome formation during deposition of the overburden) or a growing 
cylindrical region of buoyant fluid (melt generation at island arcs and at mid-ocean 
ridges). When the overburden or growing cylinder is thin ( H  x 0 or a z 0) the growth 
rate of the instability is small (equation (4.1b) or (4.2b)) and much less than the 
inverse timescale of growth (B/H or d /a ) .  No instability is able to grow in less than 
the timescale for growth and none of the unstable wavelengths dominates the others 
since the most unstable wavelength a t  one time is superseded by a different and more 
unstable wavelength a t  later times. As the thickness increases, however, the rate at 
which the most unstable wavelength is varying due to evolving geometry decreases, 
while the growth rate 7-l of instability increases. At a well-defined time and thickness 
the two rates become equal and i t  is at approximately this time that the instability 
becomes apparent, grows to large amplitude and drains the buoyant material away 
in ascending diapirs. It is clear that the buoyant region could not be stabilized by the 
changing geometry much later than this time since the timescale for instability 
would be much less than the timescale for changes in geometry. The usefulness of this 
argument is due to  the narrowness of the interval in which the two timescales are of 
comparable magnitude. 

The preceding discussion may be applied to salt-dome formation. If the deposition 
of the overburden is rapid compared with the timescale of diapirism then the spacing 
of the diapirs will be given by the most unstable wavelength based on the 
stratigraphy after deposition. In some regions, however, the observed spacing would 
appear to be related to the stratigraphy at an intermediate stage of deposition (Craig 
& Jackson 1987). This may be understood if i t  is hypothesized that deposition and 
diapirism occurred synchronously (rather than sequentially) with the spacing 
' locked-in ' at the most unstable wavelength pertaining when diapirism became 
dominant. This hypothesis may be tested for consistency since, as described above, 
the locking-in time may be determined by equating the typical depositional 
timescale with the instability timescale a t  locking-in. 

For island arc and mid-ocean ridge volcanism, on the other hand, we can equate the 
instability timescale 7 with the timescale for the growth of the buoyant region a/u  
to deduce that 

(5.1) 

where a, is the critical ribbon radius. If we relate the mean volume flux Q of erupted 
material to the melt-production rate 2naU and use ( 4 . 2 ~ )  we obtain 

6, = (-)a:, 9 4 
P+ 
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where A, is the typical spacing between volcanoes. The linear relation between Q and 
A t  agrees with observations of mid-ocean ridge volcanism (Schouten et al. 1985). Since 
Q and A, are observable then we may regard (5.2) as an equation for Ap/,u+. 

Equation (5.2) depends on the melt fraction c principally through the empirical 
relationship A p  (gem-3) = 0 . 4 ~ .  In  the calculations of Schouten et al. (1985), however, 
the equivalent equation to (5.2) has an extra factor I'-% on the right-hand side due 
to its derivation from (4.1) (representing a layered geometry) rather than from (4.2). 
Large values of c correspond to very large values of I' (values in the range lo4-lo9 
would not be unreasonable), so this extra factor would argue against large melt 
fractions in a layered geometry, since they would lead to  inadequate melt-production 
rates. In  contrast, calculations based on (4.2) and (5.2) (derived from an appropriately 
linear geometry) predict realistic melt-production rates from a region that may be 
slightly, substantially, or even completely molten ( K e n  & Lister 1988). 

Our final comment relates to salt-dome formation and to the importance of the 
properties of the rock underlying the buoyant stratum. This simple observation, 
whose significance appears not to have been realized, is drawn from our test model 
of $2. If a buoyant salt deposit overlies an effectively rigid igneous basement then the 
two-layer models of Selig (1965) may give reasonable results. However, in regions of 
episodic deposition the salt may overlie the same deformable sediment that forms the 
overburden. At small viscosity contrasts the dominant wavelength of instability 
would then be very large and would scale on the depth of the entire deformable 
region rather than on the thickness of the salt stratum. In this connection, we note 
the criteria given a t  the end of Q 2 for the underlying stratum to be deformable or non- 
deformable and free-slip or no-slip. 

In  conclusion, though the stability analysis of general, 1ayered;viscous systems is 
relatively easy to formalize, in much of the geological literature there seems no clear 
physical understanding of many of the results. Further, we have shown that the 
prediction of models of geophysical phenomena need to  be treated with caution if 
they are based on the assumption of a particular geometry. For example, if a 
buoyant-instability model with a linear, rather than planar, geometry is adopted for 
island arcs and mid-ocean ridges then the asymptotic dependence of A and 7 on fl is 
removed. As a consequence, previous arguments that the melt fraction is small would 
have to be abandoned. More generally, we believe that paradigm theoretical studies 
such as those described here can and should serve as essential guides in clarifying the 
assumptions of detailed geophysical models. 
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